WICHTIG: Der Betrieb von goMatlab.de wird privat finanziert fortgesetzt. - Mehr Infos...

Mein MATLAB Forum - goMatlab.de

Mein MATLAB Forum

 
Gast > Registrieren       Autologin?   

Partner:




Forum
      Option
[Erweitert]
  • Diese Seite per Mail weiterempfehlen
     


Gehe zu:  
Neues Thema eröffnen Neue Antwort erstellen

Digitalisierung PID Regler

 

tw00
Forum-Newbie

Forum-Newbie


Beiträge: 5
Anmeldedatum: 24.05.12
Wohnort: ---
Version: ---
     Beitrag Verfasst am: 24.05.2012, 15:18     Titel: Digitalisierung PID Regler
  Antworten mit Zitat      
Hallo,

in Appendix B des Datenblatts "Implementation of PID and Deadbeat Controllers [...]" (http://www.ti.com/lit/an/spra083/spra083.pdf) wird ein digitaler PID-Regler beschrieben.

Das Iterationsgesetz in diskreter Form u(n) wird dabei aus einer Differenzbetrachtung hergeleitet, um die Summenbildung zu eliminieren.

Ich kann mir dabei Gleichung (33) nicht erklären. Warum wird das Zeitintervall um -2 und nicht um -1 verschoben? Und, wichtiger noch, warum verschiebt sich der differenzierende Term nur um -1?

Viele Grüße und ich hoffe die Frage ist nicht zu speziell Rolling Eyes
Thomas
Private Nachricht senden Benutzer-Profile anzeigen


EliteTUM-Gast

Gast


Beiträge: ---
Anmeldedatum: ---
Wohnort: ---
Version: ---
     Beitrag Verfasst am: 25.05.2012, 16:16     Titel:
  Antworten mit Zitat      
Hi,

hm, hab mir einfach die zwei weiteren Formeln angekuckt und versuchs damit zu erklären: Wie man sieht wird in Formel (34) die (33) verwendet und das dann umgewandelt, so dass sich (35) ergibt. Da erkennt man, dass auf der linken Seite des Gleichheitszeichen u[n] ergibt für den aktuellen Zeitpunkt n und auf derr echten Seite nur Signale aus der Vergangenheit, nämlich n-1 und n-2 stehen. Insofern würde ich das mal als mathematisch "schlauen Trick" bezeichnen, bei dem man wissen muss worauf man hinaus will um auf die Lösung zu kommen Wink
 
tw00
Themenstarter

Forum-Newbie

Forum-Newbie


Beiträge: 5
Anmeldedatum: 24.05.12
Wohnort: ---
Version: ---
     Beitrag Verfasst am: 25.05.2012, 17:01     Titel:
  Antworten mit Zitat      
Hallo EliteTUM-Gast,

mein Irrtum könnte darin liegen, dass ich angenommen hatte, dass Gleichung (33) direkt aus Gleichung (32) hergeleitet wird. Daher die Frage, warum sich die Berechnung des D-Anteils NICHT um -2 verschiebt, sondern nur um -1, obwohl P- und I-Anteil um -2 verschoben werden.

Die restliche Berechnung ist soweit klar. Würde aber m.E. genau so gut funktionieren, wenn man folgendes gemacht hätte:

Wenn
u(n)=K_p\cdot e(n) + K_i\cdot \sum\limits_{i=1}^n e_iT + K_d  \frac{de(n)}{dt}
mit
\frac{de(n)}{dt} = \frac{e(n) - e(n-1)}{T}.

dann
u(n) - u(n-1) = a_1 e(n) + a_2 e(n-1) + a_3 e(n-2)

wobei a1,a2,a3 irgendwelche Konstanten wären, die man ausrechnen kann. e(n-2) würde dann durch die "korrekte" Verschiebung von de(n)/dt genau so drin stehen.

Evtl. ist Gleichung (33) so gewählt worden, da es günstig ist die Berechnung des D-Anteils "soweit wie möglich" in der Zukunft zu machen?
So wirklich verstehen kann ich das nicht.

Grüße
Thomas
Private Nachricht senden Benutzer-Profile anzeigen
 
tw00
Themenstarter

Forum-Newbie

Forum-Newbie


Beiträge: 5
Anmeldedatum: 24.05.12
Wohnort: ---
Version: ---
     Beitrag Verfasst am: 25.05.2012, 17:23     Titel:
  Antworten mit Zitat      
Genau genommen müsste für

u(n) - u(n-1) = a_1 e(n) + a_2 e(n-1) + a_3 e(n-2)

folgendes gelten:

u(n) - u(n-1) = K_p  (e(n) - e(n-1)) + K_i  T  e(n) + \frac{K_d}{dt}  ( e(n) - e(n-1) - e(n-1) + e(n-2) )

also

u(n) - u(n-1) = (K_p + K_i  T + \frac{K_d}{dt}) e(n) - (Kp + 2\frac{K_d}{dt} )e(n-1) +  \frac{K_d}{dt}  e(n-2).

Warum komplizierter als so?


Ich hatte in der Vergangenheit auch schon mal folgenden PI-Regler gesehen:
u(n) - u(n-1) = (K_p) e(n) - (Kp + K_i  T)e(n-1)
statt
u(n) - u(n-1) = (K_p + K_i  T) e(n) - (Kp )e(n-1).

Herleitung ist ebenfalls unklar! Crying or Very sad
Private Nachricht senden Benutzer-Profile anzeigen
 
gjp578
Forum-Anfänger

Forum-Anfänger


Beiträge: 17
Anmeldedatum: 23.03.11
Wohnort: ---
Version: ---
     Beitrag Verfasst am: 19.07.2012, 11:14     Titel:
  Antworten mit Zitat      
es geht um die numerische verfahren. es sind 2 unterschiedliche Verfahren hier. und nicht die direct Ableitung. wenn du siehst dass (33) nicht kausal ist und es ist ehe die implizite euler verfahren

guck mal vorwärts euler und rückwärts euler verfahren.
kurz bei wiki
http://de.wikipedia.org/wiki/Eulersches_Polygonzugverfahren

genauer guckst du dieses buch. drin wird alles erklärt wie man mit digitalisierung umgeht
http://www.amazon.com/Digital-Contr.....ems-Edition/dp/0201820544
_________________

schwer erziehbar...
Private Nachricht senden Benutzer-Profile anzeigen
 
Neues Thema eröffnen Neue Antwort erstellen



Einstellungen und Berechtigungen
Beiträge der letzten Zeit anzeigen:

Du kannst Beiträge in dieses Forum schreiben.
Du kannst auf Beiträge in diesem Forum antworten.
Du kannst deine Beiträge in diesem Forum nicht bearbeiten.
Du kannst deine Beiträge in diesem Forum nicht löschen.
Du kannst an Umfragen in diesem Forum nicht mitmachen.
Du kannst Dateien in diesem Forum posten
Du kannst Dateien in diesem Forum herunterladen
.





 Impressum  | Nutzungsbedingungen  | Datenschutz | FAQ | goMatlab RSS Button RSS

Hosted by:


Copyright © 2007 - 2025 goMatlab.de | Dies ist keine offizielle Website der Firma The Mathworks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology, SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The MathWorks, the L-shaped membrane logo, and Embedded MATLAB are trademarks of The MathWorks, Inc.