WICHTIG: Der Betrieb von goMatlab.de wird privat finanziert fortgesetzt. - Mehr Infos...

Mein MATLAB Forum - goMatlab.de

Mein MATLAB Forum

 
Gast > Registrieren       Autologin?   

Partner:




Forum
      Option
[Erweitert]
  • Diese Seite per Mail weiterempfehlen
     


Gehe zu:  
Neues Thema eröffnen Neue Antwort erstellen

Numerische DGL

 

maik_dak
Forum-Newbie

Forum-Newbie


Beiträge: 5
Anmeldedatum: 07.06.20
Wohnort: ---
Version: ---
     Beitrag Verfasst am: 07.06.2020, 01:42     Titel: Numerische DGL
  Antworten mit Zitat      
Moin,

Könnte mir jemand helfen, erklären, wie ich eine Differentialgleichung der Form d'=A*d numerisch löse?
Wobei A eine 2x2 Matrix ist und d offensichtlich ein Zeilenvektor.
Bisher habe ich das nur mit Vektoren aus einem Vektorfeld und dann plotten lassen.
Und die numerische Lösung würde ich gerne als Vergleich mit in meinen bisherigen plot miteinbeziehen.

Ich habe schon versucht das mit ode45 zu lösen weiß aber nicht ob das dann so funktioniert wie ich das gerne hätte.

Code:

[X, Y] = meshgrid(-2:0.25:3);
x = reshape(X, 1, []);
y = reshape(Y, 1, []);
M=[6,9;-1,0];
[a,b] = ode45(@(a,b) M*[x;y],[0,5],0);
 


MfG
Private Nachricht senden Benutzer-Profile anzeigen


Harald
Forum-Meister

Forum-Meister


Beiträge: 24.495
Anmeldedatum: 26.03.09
Wohnort: Nähe München
Version: ab 2017b
     Beitrag Verfasst am: 07.06.2020, 21:01     Titel:
  Antworten mit Zitat      
Hallo,

mit ode45 bekommst du "nur" eine Lösung als Trajektorie.

Die Anwendung von ode45 benötigt noch Nachbesserung.
Code:
[a,b] = ode45(@(t,d) M*d,[0,5],[0;0]);


Zu einer sehr ähnlichen Aufgabe gab es erst eine Frage:
https://www.gomatlab.de/vektorfeld-.....chungssystems-t49400.html

Grüße,
Harald
_________________

1.) Ask MATLAB Documentation
2.) Search gomatlab.de, google.de or MATLAB Answers
3.) Ask Technical Support of MathWorks
4.) Go mad, your problem is unsolvable ;)
Private Nachricht senden Benutzer-Profile anzeigen
 
maik_dak
Themenstarter

Forum-Newbie

Forum-Newbie


Beiträge: 5
Anmeldedatum: 07.06.20
Wohnort: ---
Version: ---
     Beitrag Verfasst am: 08.06.2020, 15:37     Titel:
  Antworten mit Zitat      
Ich hatte mir das auch schon angeguckt aber das ist ja kein Numerisches Verfahren.
Ich habe den Code von dir von dem Link mal benutzt um das Verfahren mit ode45 hineinzuplotten jedoch glaube ich nicht, dass das so richtig aussieht.
Vllt könntest du mal rübergucken?

Code:

[X, Y] = meshgrid(-5:0.5:5);
x = reshape(X, 1, []);
y = reshape(Y, 1, []);
M=[-1,0;0,-2];
Dxy = M * [x;y];
[a,b] = ode45(@(t,d) M*d,[0,5],[5;5])
quiver(x,y,Dxy(1,:), Dxy(2,:))
hold on
plot(a,b(:,1))
 


MfG
Private Nachricht senden Benutzer-Profile anzeigen
 
Harald
Forum-Meister

Forum-Meister


Beiträge: 24.495
Anmeldedatum: 26.03.09
Wohnort: Nähe München
Version: ab 2017b
     Beitrag Verfasst am: 08.06.2020, 16:37     Titel:
  Antworten mit Zitat      
Hallo,

sinnvoller ist, die beiden Größen gegeneinander zu plotten:
Code:
plot(b(:,1), b(:,2))


Grüße,
Harald
_________________

1.) Ask MATLAB Documentation
2.) Search gomatlab.de, google.de or MATLAB Answers
3.) Ask Technical Support of MathWorks
4.) Go mad, your problem is unsolvable ;)
Private Nachricht senden Benutzer-Profile anzeigen
 
maik_dak
Themenstarter

Forum-Newbie

Forum-Newbie


Beiträge: 5
Anmeldedatum: 07.06.20
Wohnort: ---
Version: ---
     Beitrag Verfasst am: 08.06.2020, 19:00     Titel:
  Antworten mit Zitat      
Alles klar vielen Dank.
Private Nachricht senden Benutzer-Profile anzeigen
 
Neues Thema eröffnen Neue Antwort erstellen



Einstellungen und Berechtigungen
Beiträge der letzten Zeit anzeigen:

Du kannst Beiträge in dieses Forum schreiben.
Du kannst auf Beiträge in diesem Forum antworten.
Du kannst deine Beiträge in diesem Forum nicht bearbeiten.
Du kannst deine Beiträge in diesem Forum nicht löschen.
Du kannst an Umfragen in diesem Forum nicht mitmachen.
Du kannst Dateien in diesem Forum posten
Du kannst Dateien in diesem Forum herunterladen
.





 Impressum  | Nutzungsbedingungen  | Datenschutz | FAQ | goMatlab RSS Button RSS

Hosted by:


Copyright © 2007 - 2025 goMatlab.de | Dies ist keine offizielle Website der Firma The Mathworks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology, SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The MathWorks, the L-shaped membrane logo, and Embedded MATLAB are trademarks of The MathWorks, Inc.