WICHTIG: Der Betrieb von goMatlab.de wird privat finanziert fortgesetzt. - Mehr Infos...

Mein MATLAB Forum - goMatlab.de

Mein MATLAB Forum

 
Gast > Registrieren       Autologin?   

Partner:




Forum
      Option
[Erweitert]
  • Diese Seite per Mail weiterempfehlen
     


Gehe zu:  
Neues Thema eröffnen Neue Antwort erstellen

Systemidentifikation (Diskretisierung und Invertierung)

 

Anna_16_06
Forum-Newbie

Forum-Newbie


Beiträge: 1
Anmeldedatum: 16.06.16
Wohnort: ---
Version: ---
     Beitrag Verfasst am: 16.06.2016, 22:41     Titel: Systemidentifikation (Diskretisierung und Invertierung)
  Antworten mit Zitat      
Hallo zusammen,

mir liegt der Frequenzgang einer Strecke als Messdaten vor. Mein Ziel ist es, eine diskrete Übertragungsfunktion (Abtastfrq 333kHz) der invertierten Strecke zu berechnen, welche Stabil und kausal ist, nicht schwingt und keine zu großen koeffizienten (am besten kleiner 6) besitzt und bis 100kHz das Systemverhalten genau (delta mag<0,6dB, delta phi< 4deg) beschreibt. Die Ordnung sollte wenn möglich nicht größer n=3 sein.
Die Strecke ist ein einfaches RC-Glied plus ein bisschen PT1-Verhalten des Messdatenerfassungsmoduls. Weiterhin ist in den Messdaten eine Totzeit von 1,5us vorhanden, die ich im ersten Schritt herausrechne (soll nicht mitgeschätzt werden!)
Ich habe verschiedene Methoden probiert, die alle in dem Matlabskript im Anhang zu finden sind.
1. Schätzung einer kontinuierlichen Strecke (funktioniert mit 99% genau, 2Pole keine Nullstelle). Bei diskretisierung erhebliche Abweichung von der kontinuierlichen Strecke.
Hier meine erste Frage: Sind die Diskretisierungsfunktionen wirklich so ungenau oder mache ich etwas falsch? Eigentlich sollte ja nur die Tustin-Diskretisierung zu einer Verzerrung der Frequenz führen.
Weiterhin ist die inverse der diskretisierten Strecke instabil!

2. Schätzung des inversen Systemverhaltens (zu ungenau)
3. Schätzung der Strecke als diskrete Funktion (hier muss sichergestellt sein, dass alle Nullstellen in der linken Halbebene liegen, damit ich die Funktion später invertieren kann. Gibt es eine FUnktion bei der ich direkt Beschränkungen für die Nullstellen vorgeben kann? Bei den mir bekannten Funktionen kann ich immer nur Beschränkungen für die Koeffizienten vorgeben, wasfür diese Anwendung sehr unpraktisch ist.

3a) Schätzung einer diskreten Funktion ohne Nullstellnen (zu ungenau)
3b) Schätzung einer diskreten Funktion mit Nullstellen bei Beschränkung der Koeffizienten des Zählerpolynoms (zu ungenau)

Auch mit dem System Identification Tool habe ich nichts besseres gefunden

Es muss doch irgendwie möglich sein, für eine so einfache Strecke eine Übertragungsfunktion zu finden, welche meine Anforderungen erfüllt! Hat jemand weitere Ideen? Wie kann ich die Funktion genau diskretisieren? Und wie kann ich direkt Beschränkungen für die Nullstellen vorgeben?

Viele Grüße

Anna

Systemidentifikation.m
 Beschreibung:

Download
 Dateiname:  Systemidentifikation.m
 Dateigröße:  6 KB
 Heruntergeladen:  509 mal
Frequenzgangsdaten_Strecke.mat
 Beschreibung:
Messdaten

Download
 Dateiname:  Frequenzgangsdaten_Strecke.mat
 Dateigröße:  1.34 KB
 Heruntergeladen:  460 mal
Private Nachricht senden Benutzer-Profile anzeigen


Neues Thema eröffnen Neue Antwort erstellen



Einstellungen und Berechtigungen
Beiträge der letzten Zeit anzeigen:

Du kannst Beiträge in dieses Forum schreiben.
Du kannst auf Beiträge in diesem Forum antworten.
Du kannst deine Beiträge in diesem Forum nicht bearbeiten.
Du kannst deine Beiträge in diesem Forum nicht löschen.
Du kannst an Umfragen in diesem Forum nicht mitmachen.
Du kannst Dateien in diesem Forum posten
Du kannst Dateien in diesem Forum herunterladen
.





 Impressum  | Nutzungsbedingungen  | Datenschutz | FAQ | goMatlab RSS Button RSS

Hosted by:


Copyright © 2007 - 2024 goMatlab.de | Dies ist keine offizielle Website der Firma The Mathworks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology, SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The MathWorks, the L-shaped membrane logo, and Embedded MATLAB are trademarks of The MathWorks, Inc.